£06L

NACA TM 1243

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL MEMORANDUM 1243

TWO-DIMENSIONAL POTENTIAL FLOWS
By Manfred Schéafer and W. Tollmien

Translation of ‘‘Ebene Potentialstromungen.’’ Technische
Hochschule Dresden, Archiv Nr. 44 /8, Kapitel ITII, March 22, 1941

Washington
November 1949 e

L sl G
=7 [ rar.

Lo

Il 099hh1T0

. - ——

~—

AN ‘a4v) AUVHEIT HOAL




TECH LIBRARY KAFB, NM

R R ET

_ DiyueE0
NATTONAL ATWISORY COMMITTEE FCOR AERONAUTICS
TECHNICAL MEMORANDUM 1243
TWO-DIMENSIONAL POTENTIAL FLOWS*
By Manfred Schéfer and W. Tollmien
Outline: I. CHARACTERISTIC DIFFERENTIAI, EQUATIONS - INITIAL AND

BOUNDARY CONDITIONS
II. INTEGRATION OF THE SECOND CHARACTERISTIC DIFFERENTTIAL

EQUATIONS
IIT. DIRECT APPLICATION OF MEYER'S CHARACTERISTIC HODOGRAPH
TABLE ¥FOR CONSTRUCTION OF TWO-DIMENSIONAI, POTENTIAL
FLOWS
IV. PRANDIL~BUSEMANN METHOD
V. TEVELOPMENT OF THE PRESSURE VARTATION FCR SMALL DEFLEC-
TION ANGLES
VI. NUMERICAL TABLE: RELATION BETWEEN DEFLECTICN, PRESSURE,
VELOCITY, MACH NUMBER AND MACH ANGLE FOR ISENTROPIC
CHANGES OF STATE ACCORDING TO PRANDITL-MEYER FOR ATR
(k = 1.405)
VII. REFERENCES

I. CHARACTERISTIC DIFFERENTIAL EQU.!}TIONS -

INTTTAL AND BOUNDARY CONDITIONS.

For setting up the characterlistic differential equatlons one
starts from the dlfferential equatlon for the velocity potential since
the velocity components .can be expressed more simply by the velocity
potential then by the streem function. This differentlal equation
reads, according to I(15):

2 +2 '
S A A @

with

u'_"cP_x;:v:q)y (2)

*'Ebene Potentialstromungen Technische Hochschule Dresden,
Archiv Nr. 44/3, Kapitel IITI, March 22, 1941.



2 NACA TM 12k3

and the sonic velocity & determined by

a8 =v'c;l(l-q2> (2)

in the selected non-dimensionsl representation.

The characteristic condition (cf. chapter II(8), NACA TM 1242) is

2 .. +2\.
u-j. uv 2
1 - = +2%xy + {1 - =5}x =0 (4)
I )
If one puts
Uu=gqgcos 9§ v =gqosin § (5)

the characterlistic condlition 18 written

(a2 - <_12<301a2«3)3'r2 + 2¢Psin?d cosd Iy + (a? - 2sineﬂ)icz =0 (6)

Hence result two roots X' and A" for gszc, the slope of the charac-

teristic base curves toward the x-axis:

' g_?sin 3 cos § + a.\}q2 - a2 (7a)

A‘ .
gFcosfy - a2
A" __q_esin 9 cos § - a_\ZQE - g2 7o)
o q2cos2y - &
As differential eguation for the first family of the characteristic
base curves results
and for the second
dy - )\.” dx = 0 (Bb)
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For explanation of these relations (sacmewhat difficult to survey
due to the complicated form of A' and A,") one uses an artifice which
is permissible 1n two-dimensionel flows. Since in the two-dimensional
flow, for instance, in contrast to the rotationally-symmetrical flow,
no direction is preferred, one masy place the x-axis of a Carteslan xy
" gysten in the direction of the flow at the location under linvestigation)
thus there beccmes

\o? - &2 } (9)

The Mach angle o 1is defined by

rs:l.na,:-E
q

so that

a

tan o = ~————r
- g2

(10)

This signifies according to (8) that the characteristic base curves

form with the stream lines the Mach angle o. The first family (8a) of

characteristic base curves forms the Mach angle toward the left (looking

in the flow direction), the second family (8b) forms the seme angle

toward the right. The first family of characteristic’base curves were

' thereupon denoted as left-hand, the second as
right~-hand Mach waves.

The second characteristic equation of the first
o q family of characteristics is, according to II(28b),
o

(NACA TM 1242):

- qPein § cos § - a\g® - &2 &
u

v =20 (11a)
q‘?cosea - &
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?nd for the second famlly of characteristice, according to II(29b)
™ 1242):

: 2 \/ 2 2
gln 9 cos 3§ + a - a
du + E 4

q?coseﬂ - a?

dv = 0 (llb)

with

du = cos ¥ dq - q sin 9 49

(12)

dvy = gin 9 dg + q cos 9 49
If one applies the seame artifice as in seiécting the special coordinate
system at the considered locatlon, one cbtains, since § +there becomes
o,

du = dq, dv = q 43

and one hasg on the first famlly of characteristics

dg = ———— q d3 =0 (13a)
q2 - a2
and on the second
a
dq + =————— g dg =0 (13b)

Va2 - a2

The two relations (13) contailn only gquantities independent of the
speclal selection of a coordinete system. Together with the remark
made initlally on the admissibility of the last used coordinate system
there results, accordingly, the general validity of the relation (13a)
for the first, of the relation (13b) for the second Pamily of charac-
teristics. g

The relations (13) are often, in an elementery menner, deduced
from the fact that the Infinltesimal velocity variation is perpendicular
to the Mach wave:
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oo o)

e -
sin<—+a.-d6)
2
_ cos
cos o + gin o 43
=1 - tan a 4§
dg = =g ten « 49 .
a
= - q ds
q2-a2

Thus the velocity veriation in crossing & left-hand Mach wave 1is
regulated according to this equation (cf. (13b)); the crossing has to
take place glong & right-hand Mach wave. Regarding this elementary
derivetion the fundemental remark has to be mede that here taclitly the
existence of a relation between u and v &lone (and between q

end 9 @&alone, respectively) is essumed. In the rotationally-symmetricel
case where this presupposition no longer holds, one obtalns accordingly
another characteristic equation although the veloclty increment occurs
as before perpendicularly to the Mach wave.

A few remsrks concerning the gecondery conditions which supervene
the differential equation of the two-dimensionel potential flow ere to
be inserted at this point.

The secondary conditions may for instance be glven by initisl
conditions, that is, on an initial curve (for example, in a certain
croes section of a channel) a few or all flow values are prescribed.
The front of a compression shock alsc mey serve as initiel curve. The
initiel dlstributions for the approximstion method dlscussed here are
approximated by distributions constant over smell dlstances. Therein
it was often used as approximaetion principle that the jumps In 3 eare
to be of a certain magnitude, for instance +1° or +2°. Correspondingly,
the boundary distributions which are given by boundary conditions, the
main types of which will now be discussed, are &lso approximated.
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3 1is prescribed at & solid wall. If one denotes as campression
wave & Mach wave behind which & pressure increase and a veloclty decrease
takes place, compression waves are reflected &t a solld wall as compres-

sion waves. This can readlly be seen in the flgure.
The crossing of the right-hand Mach compression wave
occurs elong & left~hand Mach wave; thus the pre-

supposed decrease of q according to (13a) is

connected wilth a decrease of 9. The crossing of the adjoining left-
hand wave along a right-hand wave must cause - due to the boundary
condltlion et the wall which 1s assumed to be unbroken - an increéase

of 9 which according to (13b) produces & decrease of g, therefore a
compression.

At a free Jet boundary the pressure p 18 prescribed as constant;
thus the velocity aq also 1s a known constant there. The free Jet
boundary must - because of the kinematic boundary condition of vanishing
normel velocity - colncide wilith a stream line which will be determined
in the course of the solution of the flow problem. A campression wave
is reflected at a free Jet boundary as rarefactlon wave since the drop
in veloclity which occcurred flrst must be made good again by an increase,
in order to satlsfy the condition of constant velocity at the free Jet
boundary.

2. INTEGRATION OF THE SECOND CHARACTERISTIC
DIFFERENTIAL EQUATIONS.

Of the characteristic equations (8e), (8b), (13a), (13b) the last
palr cean be very easily Integrated; this was elready done by Th. Meyer
(cf. Th. Meyer, particularly p. 38). Following, & derivation is given
which fits Into our general theory.

On the left-hand famlly of characteristlcs

d__q_ a
= ——— g (13a)
as =
K'. -
with &2 = > = (1 - ¢2). Hence o may be determined as function

of q by quadrature. The executlion of this elementary integration
results in ; ’
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&

£+ 1 k - 1 2 € + 1 -
§ = _larcta.n 1 - m_—y
ko+ (¢ -1)(1 -¢2) *

&

- arc tan 2 -K+l+'31 (1)

(e = 1)(1 - ¢2)

- * arc ten<da* |= - -f - arc tan [= - = 4+ 9
a* 82  ax2 a2  ax2 i

- 2 2
or 9= trl arc tan EoLojas . 1 - arc tan - 1l + ﬂz, where a¥*
kK -1 K+ 1\g2 a2 .

is the critical velocity \/%E—i-%% and 9; represents an Iintegration

congtant. It has to be noted that all veloclitied have been made non-

2x D -
- -nl Ei (po tenk pressure, po tank density).

dimensional by V=

For this relation a table of data particularly convenlent for the

practical celculation has been given by O. Walchner for air (k = 1.405)

(ef. pp. 22-23). Aside Prom the velocities g referred to the sonic '
veloclty &a and the criticel sonlic velocilty a¥*, the pressure D, :

referred to the tank pressure p, 1is given, for which the equation

2 oo (1 - g2)h/ (k1)
PO

is velid. In the last column the Mach angle a is indicated. The
integratlion constant 9; is selected as 0O, v 1s used instead of 3
for thls speclal integration constant; the reason for this will be
shown in the next paragraph. The application of the Meyer-Walchner
table for the approximated comstruction of two-dimensional potential
flows will be dlscussed in the next parsagraph.



8 | NACA TM 1243

For the right-hand characteristics one cobtains correspondingly by
integration of. (13Db)

1 1 1 1 1
- = = gy -ban a* —— - ee— - ar -ban —— e mmm— -ﬁ l
’ ax i \/&? %*%}. ’ a2 a2 T (13)

- 2 ' 2
-9 = (Bt d g tany/Tod A -1 - arc ten, (& -1 - 9
1 a2 2 r

or

K-
K+ 1 a

with dr being an integration constent. On the left-hand character-
istics increasing ¢ 18, according to (13a), connected with
increasing 9, on the right-hend characteristice increasing q, accord-
ing to (13b), with decreasing 9. Hence the designation left-hand and
right-hand, at first inbtroduced through the characteristic base curves
of the Mach waves, ls lmmediately comprehensive also for conslderation
of the 'cheracteristic hodographs” the equation of which 1is given in
polar coordinates (g radius vector, ¢ angular coordinate) in
differential form by (13a) end (13b), in the integrated form by (1L)
and (15). Cl. Thiessen (1926) first drew attention to an interesting
geometrical interpretation of these characteristic hodographs. A
geoametrical proof which, however, requires longer preparation, hes
been given by A. Busemann. Followlng, we glve our own proof, relin-
quishing the non-dimensionsl representation, in order to conform to
customary representation.

Accordling to Thiessen the characteristic hodograph curves are
epleycloide originating from the rolling of a circle of diameter Yy ~ a¥*
on & circle of radius a*, '

SR . 2
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Since the rolling circle rolls in the denoted posltlon about the
point A, the point Q - which has the distence q from the center of
the fixed circle 0 - traces a small clrcular arc ebecut A. Thus the
increment dq 1lies on the line @QB, since QB 1s perpendicular to QA.

On the other hand, dg is, according to the end of the previous
paragraph, for two-dimensionsl potential flows unequivocally determined
by the fact that dg 1s perpendicular to the Mech wave which with ¢
(here represented by 0Q forms the Mach angle o = arc sin a/q. Thus
the proof will be glven i1f the angle 5_ 0QA 1s found to be equal to
the Mach angle. : '

If one pubts preliminerily

b_0qa = ¢
K _qBo = B
B 0B =mf2 + ¢
4 qao = n/2 + B

According to the sine theorem applied to the triangies OQB and OQA
one obtalns

and

one has

T
sin(-é-+ €) _ cos_e _ZE-

sin B gin B q

gin € gin ¢ a%’

sin(; + B) cos B 1

From these two equations the angle € which is of interest to us
mey be calculated by elimination of Pp. This brief calculatlon may be
performed about as follows. One has directly

sinB=g‘cos€

m

- 2
cosB—a*sine
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Hence follows by squaring and adding

2 2
q2 (cosae + s:l.:2 e) =1
Vm a

or

Next, there results

This, however, 1s Just the equation for the Mach angle; thus € equals
the Mach angle. Therewlth the fundamental statement dealing with the
behavior of dq wlith regard to the characteristlcs has been obtalined
again. The directlional fleld produced by rolling of the circle coin-
cldes, therefare, with the directional field of the characteristic hodo-
graph curves. The characterlstic hodograph curves are eplcyclolds.

2. DIRECT APPLICATION OF MEYER'S CHARACTERISTIC HODOGRAPH
TABLE FOR CONSTRUCTION OF TWO-DIMENSIONAL

POTENTTAL FLOWS.

Msyer's solubtlon for the characteristic hodographs indicated
in the previous paragraph has been used directly for the consgtruction
of two-dimensional potential flows by J. Ackeret and, recently, by
0. Walchner. We shall explaln the method 1in one of the examples cal-
culated by 0. Walchner which for the first time showed the general
velidity of the method.

First 1t 1s to be noted that the one table given actually 1s
sufficient for all characterlistic hodographs, since, according to (14),
for the left-hand characteristic hodographs

V=v+ 9 (16)
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according to (15) for the right-hand characteristic hodographs

3= -V o+ A, a7

It has to be pointed out that the crossing of a right-hand Mach wave
tekes place along & left-hand characteristic, so that (16} is valid.
The crossing of a left-hand Mach wave occurs along & right-hand cherac-
teristic with (17) being valiid.

The transition from one fleld with the index 1 +o the next with
the index 1 + 1 1s regulated at the crossing of a right-hand Mach
wave, thus according to the equations:

V:L +’97,

441 = Vi41 + 9

whence follows, with 33 eliminated:

v

141 = Vi+@i+l -3 (18)

For crossling of a left-hand Mach wave

Y = -V + 94,

B34 = “Vin t* N
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must be valid or, after elimination of Jr:

Vita = V1 T ("1+1 B “’1) (19)

According to the two equations (18) and (19) Meyer's teble is used for
the approximated calculation of two-dlmenslonel potential flows.

The selected example of Walchner (fig. 3 of Walchmer's report Lufo
Bd. 1k (Aviation Research, vol. 14) p. 55, 1937) deals with the flow
about & biplene at an angle of attack, with relatively rough approxi-
mation since large Jumps in direction fram one fleld to the next are
admitted. Furthermore compression shocks are approximeted by Mach
waves which - in view of the weakness of the occurrlng shocks - 1s
sti1l justified (cf. cheapter V, par. 5).

The fleld numbers are put as lndlces to the perteining flow

g, P
values. In the initial field ai = 1.6, 53: =0.221, 97 =0 s
1 o

prescribed. According to the table the value Vl = 16° pertains to
this value of g/a or p/p,- In fleld 2 ¥ = -10°, due to the
geometrical boundary condition. Since 1n the transition from fleld 1

to fleld 2 a right-hand Mach wave 1s crossed, vp = 6° according to (18);

) q,
according to the teble, the pertinent values &are a—i‘ = 1.293,

b .
1—)3 = 0.363. For field 3 one has, for geometrical reasons, o3 = 4°; the
o

transition from fleld 1 to fileld 2 leads, according to (19), to vz =12°

q p
with Eé = 1.50k, 52’ = 0.270. The calculation of the q- and 9Jd-values
3 0

in the next fileld 4 represents the general case of the method. From
fleld 2 one arrives at field 4 by the crossing of a right-hand Mach
wave, thus according to (18): Y, = V3 + ﬁh_ - '83 = 80 4 %,. From

field 2 one arrives at fleld 4 by the crosging of a left-hand Mach wave,
thus according to (19): V) =vy -Csk' - 62) = -40 -9, . From the two

equations for §), and V) set up Just now follows 9 = -6°, Y, =20

q P
with Efl: =1.132, P—h = 0.449. TIn ell remaining fields < 1s prescribed
o -
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by geametrical boundary conditions so that the calculatlon is easy and
tekes place very simllerly to that for field 2 and fileld 3. Omne has

4 - P
95 = 40, Vg5 = 12°, a_: = 1.504, —z = 0.2703
: ig Pg .
dg = -10°%, V. = .60’.‘&—6 = 1.293, P—o = 0.363;

. q D
97 = -39, Vo = 19°, a‘g{ = 1.Th3, _.E_,g = 0.1903

dg = -3°, Vg = 13°, a—8 =1.538, = = 0.257

A drawing machine is desirable for plotting the Mach waves which
close any newly celculated fleld.

Wlth a finer subdivision of the angular varilations, a greater
accuracy seems attainable by means of thls method than with the aid
of the Prandtl-Busemsnn method described below.

4. PRANDIT.-BUSEMANN METHOD:

For approximated construction of two-dimenslionel potentiel flows
mostly the Prandtl-Busemann method is used, the mein expedient of which
1s & diagrem with the characteristic hodograph curves (14) and (15),
respectively.

The Prandtl-Busemann method 1s, according to our terminology
introduced in chapter II, (NACA TM 1242), a field method, that is, a
pair of values g, ¥ 1is coordinated to each field formed by the
characteristic base curves or Mach waves. For the seke of a simple
representation of the method we assume this pair of values g, 4 +to
be valld precisely for the field center, the definition of which was
glven in chapter II, paragraph 7, NACA TM 1242.l1 We now visualize the
field centers as connected with each other; these commnecting curves

1 The Pield centers are very useful for explanation of the method)
they are, however, in case of two-dimensional potentiel flows, in contrast
to rotationally-symmetrical ones, not required for the construction so
that the exact definition of thé field centers would here not yet be
necessary.
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glve, a8 was shown, egaln characteristic base curves, thus here the
Mach weves. To these Mach waves, not perhaps to the Mach waves of the -
field boundaries, the characteristic hodogreph curves were coordinated.

The net of the characterigtic hodographs may be drawn once and for
all according to the expositions in section 2 for a glven k. According
to former representations the crossing of a left-hand Mach wave in the
flow plane 1s connected with & progressing along & right-hand charac-
teristic hodograph in the veloclty plame. ' Correspondingly, crossing of
a right-hand Msach wave 1s coupled with progressing along a left-hand
characteristic hodograph. Busemann and Prelswerk gave a net of charac-
teristic hodographs for K = 1.405. This dlagram is customarily denoted
simply as "characteristics diegram'.

In order to celculate from the known

pairs of velues g, 9 1in fleld I and IT

I the unknown pair of values q, 3 1in the
field IIT adjoining downstream, one pro-

gresses from the point in the character-
istlce disgram corresponding to field I

slong a right-hand epicycloid, since one
has crossed a left-hand Mach wave in the
transition from I to III; correspondingly
one progresses from the point of the characteristics diagram corres-
ponding to fileld IT along a left-~hand eplcyclold. The point of .-
intersection gives the palr of velues g, 9 for the fleld IIT. The
field that had been open so far is then closed by two Mach waves the
direction of which 1s determined from the values of g &and 3 found
Just now. The modificatlions of the method for flelds at the boundary
of the reglon are obvious.

In order to facilltate the reading of the q'- and J§-values from
the cheracteristics diegram, one mey take the net of the characteristic

hodographs as net of coordinates. According to (14) and (16), respec-
tively, one has for the left-hand eplcycloids:

9- Yq) =9, ' (20)
according to (15) and (17), respectively, for the right-hand epicycloids

-9~ va) = -9, (21)

Thus 9 and - through the tebulated function v(q) - ¢ as well may be
very easily expressed by the perameters 9J; and 61, of the eplcycloids.
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Instead of the pareameters 9; and 9, which probably first seemed

obvious, Busemann selected others with only the starting polnts of the
count shifted from 3 end V. The angles § &and v are measured

in degrees. The degree sign (°) is omitted below. One may then express
Busemann's epicyclold numbering so that as equation of the left-hand
eplcyclolds

3 -v(q) = 2(n - 400) (22)

as equation of the right-hand eplcyclolds

= -v(a) =2(x - 600) (23)

is written with the new paremeters A &and p. Hence there results
200 =% =p = A (24)

1000 -V (q) =1 + A : (25)

Thus the difference of the new parameters* A and p glves the angle 3
except for an insignificant shifting of the initlal point and reversal.
of the sense in which one is counting. The center line of Busemesnn's
cheracteristics dlagram (8 = 0) obtains the "direction number"

g = A equel to 200, whereas the sum of A and p yilelds the function
v(q) end therewith also q and the pressure p. The numbering of the
epicyclolds according to (22) and (23) is carried out very easily if
one considers additiomally that v(q) Just vanlishes for gq = a¥
gcritical velocity). Busemann writes the paremeters A and p as
"f1eld numbers" into the fields of the flow plane; a table for the
connection of the "pressure number" W + A with a and p must be
glven as supplement.

If one approximates the initial and boundery conditions in such &
menner that one replaces the prescribed angles by sectionally constant
distributions with Jumps of +1° or 120 ;s one mey &ssure by a sultably
fine-meshed characteristics dlagrem that one gets by without Interpola-
tion. The custamery characteristics diagrams sre in thelr mein part
arranged for angular Jumps of 1°.
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Additionelly developed graphical expedients for facllitated
plotting of the Mach waves will not be dlscussed, slnce one cen dispense
with them when a drawing machine is used.

We wlll be content with these observatlons regarding the Prandtl-
Busemann method and will omit the cerrying out of a standard example
since the method has been represented in detail by Heybey (HVP - Archiv
Nr. 66/31 and 66/32).

5. DEVELOPMENT OF THE PRESSURE VARTATION

FOR SMALL. DEFLECTION ANGLES.

In a flow unllaterally hounded by a well the flow variatlons en-
forced by the boundary condltions are propagated fram the wall along
one family of Mach wavesj; 1n the figure 1t is the left-hand family.

. g>0 ‘ 55555325255525
R
i;%%% S<0

This property of two-dlmensional potential flows follows immediately
from the characteristlic differential equetions (13) which connect
veloclity and directional variation. Thils property ls by no means
trangferable to other then two-dimensionsl potential flows, for instance
potentlal flows with rotatlional symmetry.

Since for the conditlons agsumed in the figure the flow variatlons
occur at the crossing of left-hand Mach waves, they may be calculated
by progressing along & right-hand characteristic, thus according to
(13b) from

ag

dg = - = (13b)
2 - a2

A development of the pressure difference for deflection of the
flow from the angle O = 0 +to the angle 9 =58 is to be glven; the
deflection angle & 18 to be amall and the third powers of d are
8t11l to be included in the development. Busemann has for the first
time set up such & development, using a method toteliy different from
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ours. In order to develop the pressure, first the velocity do which

18 to pertein to § = & is developed according to equation (13b) with
respect to 8. For 4§ =0, q 1is to equal Q- We’ set up:

2
q2=ql+c16+c28 +c383 (26)

and determine the unknown coefficlents ¢y, Co, c3 fram (13b) by com-
d.
parigon of the coefficlents. One has only to equate £=cl+ 2¢cp B+ 303 82

with the expression’ originating from - — when gq 1is replaced

2 - a2

by go according to (26). Therein is a2 = =& ; 1 (Vm2 - qa)- It is

most convenient to square the two sides of the relation mentioned before
comparing the coefficlents. There results

~
, oq .
o = - —————, o = - = - Bn-l)ql’++2&1ﬂ
q-12 - 832 ll-(qlz - a12>
8191
o5 = - = (r - 1)(2x - 3)g36 > (27)
+9(x - LaPet + 6o *q,® + 28,°
_J

In oi'der to obtaln from the develomment for qo that of the pressure
Do, one starts from the isentroplc pressure equation

I : K
:9_2 _ Vm2 - q-22 k-1 =11 - q-22 - qu K=-1 (28)
Py Yy 2 _ .2 - 2 _ 2
1 vm Cl1 Vm ql
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This expression is binamiaslly expanded, msking use of (26) and (27).
For trensformation of some of the terms one applies the formula

2k i}
k -1

=p
2 _ 2 1
Vm eh :

which  follows from the energy theorem (I(6)), and

g _KkK-1/ o _ o
o o (Vm Q.

with the Mach number M = q_l/al one then finally obtalns

. 52(}42 - 2)2 &+ Mt

5
Py, = Py = PG e T
s TP =AY {J—Mz_l o - )2
83

8
+ e - 1)7/2 E& + 1)M

(29)

+ (22 - 7% - 5)M0 + 10(x - L)MM - 12M2+8:l

The first texm of this develorment may be found already in Th. Meyer's
report; Busemann gives the development up to 83 (Volta congress, D. 237) .
It 1s true that the coefficient of 53 as calculated by us, completely
differs fraom Busemann's. The comparison of the pressure difference
occurring for isentroplic deflection with the one in case of a compres-
sion shock ls made In chapter V, paragraph 5.

In transferring formula (29) to the case of the flow variation
taking place at the crossing of right-hand Mach waves, one has to
establish the connection with the characteristic differentlal equation
(13a). The simple rule results that one has to select the sign of & in

(29) as it corresponds to a reflection on the freestream direction of the
conditions assumed above (cf. the figures on p. 16).
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?

As application of this formula (29) we use the calculation of cg
and oy for circular segment profiles in second approximation which
was already performed by A. Busemann.

According to the figure one has for the upper side (index ob) of
the profile ®y, = -B - By, and for the lower side (index u) By = B.

If one replaces cos & by 1, sln & by B, one has

t
(Pu - Pob) al

2
P1a
tll

o)

t -
l -
Cw = > <PuB = PopP - Po'bBo'b> al
i )
5 0

with the integration to be extended over the entire wing chord. If one
uses formule (29) to the second term in B for the expression of Dpy
and Pop’
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for which one writes &bbreviatedly:

= 2
.4
p-pl=iel_@la+case)

2 (2 - 22 + et

Cy = —=——, C
1 VM2 -1 2 »(M2 - 1)

one obtains

»Cq 5

cg =201 - T Bgy & :

t
Therein 1t 1s already teken into account that f Bob dl venishes
0

(for the expression for o we shall also use the vanishing of

t
f Bobs dl for circular segment profiles). In the foregoing deriva-
o}

tion cg 18 then determined to include terms which are quadratic in the
angles B and By,. For oy one obtains analogously the expression

including terms of the third order in the angles B and Bob:
t
3Co o

7]
C
- 20,82 4 2 2 - c73
oy = 204B< + tf Bop &1 " B Bob
. 0 O

al
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Since one has for approximation of the circuler arc by a parabolic arc

one obtalns

Therewith becomes

It i1s noteworthy that for the angle of attack =0 a negative 1ift of
the circular segment profiles exists which was also determined experi-

mentelly.

814 44

Bo'b - 1? t

-» Oy [ha\2 _/ha\2
204 B2 2[5 -C —
lﬁ + 3('[3) Eﬁ(t>
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RELATTION BETWEEN DEFLECTION, FRESSURE, VELOCITY, MACH NUMBER AND

MACH ANGLE FCR ISENTROPIC CHANGES OF STATE ACCCRDING TO

PRANDTL-MEYER FOR AIR (k = 1.405).

- L 9 - 3
v Po o* 2 a arc sin q
0° 0.527 1.000 1.000 90°00"!
1 478 1.067 1.081L 67 45
2 k9 1.106 1.132 62 05
3 42k 1.140 1.177 58 10
4 402 1.170 1.217 55 20
5 .382 1.199 1.256 52 50
6 .363 - 1.225 1.293 50 40
7 346 1.250 1.330 48 45
8 «329 1.275 1.366 L7 05
9 .31k 1.299 1.501 45 35
10 .299 1.322 1.436 4y 10
11 284 1.345 _1.470 42 50
12 270 1.367 1.504 41 4o
i3 257 1.388 1.538 4o 30
1k 24N 1.408 1.572 39.30
15 .232 1.428 1.606 38 30
16 221 1.44T 1.640 37 35
17 - .210 1.466 1.67h 36 ko
18 «200 1.485 1.708 35 50
19 190 1.50k 1.743 35 00
20 .180 1.522 1.778 34 15
21 <170 1.540 1.812 33 30
22 161 1.557 1.848 32 45
23 .153 1.575 1.883 32 05
24 145 1.592 1.918 31 25
25 .137 . 1.609 1.95L 30 50
26 «130 1.625 1.990 30 10
27 .123 1.642 2.027 29 35
28 116 1.658 2.083 29 00
29 .109 1.674 2.100 28 25
30 .103 1.689 2.138 27 55

~NACA_—
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RELATION BETWEEN DEFLECTION, PRESSURE, VELOCITY, MACH NUMBER AND

MACH ANGLE FCOR ISENTROPIC CHANGES OF STATE ACCORDING TO

PRANDTL-MEYER FOR AIR

(¢ = 1.405). - Continued.

P a
v P—o ;%(_- % o = arc s;n E
31° 0.097 1. 70k 2.177 27%20'
32 091 1.720 2.215 26 50
33 .086 1.735 2.255 26 20
3k .080 1.750 2.295 25 50
35 .076 1.765 2.335 25 20
36 -0TL 1.780 2.376 2k 55
37 <067 - 1.794 2.118 24 25
38 062 1.808 2.460 24 00
39 .058 1.822 2.502 23 35
40 .055 .836 2.545 23 10
4 .051L 1.8%0 2.590 22 45
L2 .ObT 1.864 2.635 22 20
43 <Ok 1.877 2.661L 21 55
Wy .0k1 1.890 2.728 21 30
45 .038 1.903 2.778 21 10
46 .035 1.915 2.823 20 45
47 .033 1.928 2.872 20 20
48 .030 1.940 2.922 20 00
49 .028 1.952 2.974 19 ko
50 .026 1.98L 3.027 19 20
51 . 024 .976 .08L 18 55
52 .023 1.988 3.136 18.35
53 .021 1.999 3.191 18.15
5l .019 2.011 3.247 17.53
55 .018 2.022 3.304 17 35
56 .016 2.033 3.363 17 20
57 .015 2.0kl 3.424 17 00
58 <013 2.055 3.487 16 40

~_NACA_ -~
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